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  MISSION STATEMENT

The NIDCD National Temporal Bone, 
Hearing and Balance Pathology Resource 
Registry was established in 1992 by the 
National Institute on Deafness and Other 
Communication Disorders (NIDCD) of 
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continue and expand upon the former 
National Temporal Bone Banks (NTBB) 
Program. The Registry promotes research 
on hearing and balance disorders and 
serves as a resource for the public and 
scientific communities about research on 
the pathology of the human auditory  
and vestibular systems.
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Enhancing the Accessibility of 
Archived Human  

Temporal Bone Sections for 
Immunohistochemical Analysis

T
he introduction of immunohistochemistry in human otopathology research 
nearly half a century ago1,2 has significantly advanced the knowledge of the 
normal morphology of the human ear and its pathomorphology in various 
disease states. However, oto-immunohistochemistry on archival decalcified, 
formalin-fixed, celloidin-embedded tissue sections of human post mortem 

temporal bones (CE-TB sections)—the primary tissue sources in otopathology research—
bears inherent methodological constraints.3 

Foremost, the prolonged formalin fixation times (2–3 weeks) of the extracted large 
temporal bone specimens causes excessive formalin-induced cross-linking of tissue 
proteins, which “masks” them for antibody-antigen binding. For many other tissues, 
this problem can be overcome by applying heat-induced antigen retrieval (HIAR) 
methods prior to immunohistochemical protocols, in order to “un-mask” tissue proteins 
and enhance antibody-antigen binding. However, the delicate CE-TB sections do not 
mechanically withstand these harsh HIAR procedures, which expose the tissue sections  
to temperatures between 80–110°C. Consequently, the accessibility of CE-TB sections  
to immunohistochemical methods remains rather limited.

To enhance the performance of immunohistochemical protocols on CE-TB sections and 
to broaden the spectrum of antibodies that can be applied in oto-immunohistochemistry, 
we developed a simple technique that allows the application of HIAR on CE-TB sections. 
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The basic principle of this technique is to mechanically press the mounted CE-TB section 
on the surface of the glass slide during the HIAR procedure, to prevent detachment and 
tissue damage when the applied heat weakens the adhesive chemical bonds and provokes 
air bubble formation. 

This is achieved by temporally clamping a Teflon sheet and a glass slide on top of the 
mounted tissue section. An illustrated step-by-step manual of this technique is provided 
above in Figure 1. The effectiveness of the HIAR procedure in unmasking tissue antigens, 
improving immunohistochemical labeling results, and preserving the delicate tissue 
morphology in CE-TB sections is illustrated in Figure 2. 

In summary, this “pressurized coverslipping” technique enhances the quality and 
sensitivity of immunohistochemical protocols on CE-TB sections. It also greatly increases 
the spectrum of antibodies for application in oto-immunohistochemistry. l
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Figure 1. Step-by-step instructions for pressure coverslipping of mounted tissue sections for HIAR 
treatment. (A) Cover the mounted tissue section with antigen retrieval buffer solution. (B) Cover the section 
with a coverslip. (C) Place a glass slide on top of the coverslip. (D) Press together the two sandwiched glass 
slides, the tissue section, and the coverslip with a plastic tubing clamp. (E) (1) microscope slide with mounted 
tissue section, (2) coverslip, (3) second microscope slide, (4) plastic tubing clamp. (F) Place the pressure-
coverslipped slide in a plastic beaker with antigen retrieval buffer solution for heating (e.g., in a microwave 
oven). (G) After heat exposure, transfer the (hot) clamped slide to a glass jar filled with distilled water.  
(H) After a cool-down period (5 min), remove the clamp and the glass slide that resides on top of the 
coverslip. (I) Place the slide in a glass jar filled with distilled water and wait until the coverslip floats off the 
slide. Proceed with the immunohistochemical labeling protocol. Adapted from [4], according to the terms  
of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/ 
by-nc/4.0/), under which the original article is distributed.
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Figure 2. Morphological preservation of CE-TB sections and immunohistochemical (diaminobenzidine; DAB) labeling of the serum and glucocorticoid 
regulated kinase 1 (SGK1) in the human organ of Corti, using no HIAR (A – A’’) or HIAR with (B – B’’) and without the pressurized coverslipping technique 
(C – C’’), respectively. Scale bars: (A, B, and C), 5 mm; (A′, B′, and C′), 1 mm; (A″ and C″), 100 μm. Adapted from [4], according to the terms of the 
Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), under which the original article is distributed.
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H
earing loss is the most common sensory deficit, 
affecting two to three out of 1,000 newborns and over 
half of the population above the age of 75.1 Genetic 
hearing loss accounts for approximately 50 percent 
of all congenital cases (Figure 1) and is classified 

according to its occurrence as part of a recognized syndrome 
(syndromic hearing loss/SHL) or as an isolated finding (non-
syndromic hearing loss/NSHL).2 NSHL is responsible for 80 
percent of genetic hearing loss and can be further subdivided 
according to pattern of inheritance—dominant, recessive, or 
X-linked. 

To date, nearly 200 deafness-related loci and causative genes 
within these loci have been identified; however, the patho-
physiology associated with these mutations has rarely been 
studied at the cellular level in living humans due to the challenges 
associated with accessing the primary organ of hearing, the 
cochlea within the inner ear.3 The cochlea’s small size, fragility, 
and encasement in the densest bone in the body located deep 
within the skull have made it difficult to resolve human cochlear 
microanatomy in living people with conventional clinical 
imaging modalities such as computed tomography (CT) and 
magnetic resonance imaging (MRI). Consequently, two 
approaches have been used to study the pathology of hereditary 
hearing loss: 1) post-mortem analysis of human temporal bone 
(TB) specimens, and 2) the creation of mouse models with  
the intention of reproducing the human phenotype. 

The study of human TBs from autopsies began in the 1920s  
and today the process remains largely unchanged. Samples  
are acquired several hours post-mortem, fixed in formalin, 
decalcified, embedded, and sectioned for preservation and further 
analysis. Results are presented as case reports that describe TB 
histopathology for a patient with a known cause of deafness. 
These studies are difficult to conduct due to the limited availa-
bility of TB specimens and the laborious process required to 
generate hematoxylin and eosin-stained slides, which can take 
several months to a year. Specimens are infrequently donated to 
research and few institutions have the infrastructure to process 
and analyze them. Importantly, these obstacles have limited the  
study of human TB histopathology to only 22 genes of the  
nearly 200 genes implicated in deafness (Figure 2). 

The other method for studying human hearing loss is through 
comparative genetics using mouse models. Mouse models for 
hearing loss were first developed in the 1920s and are useful 
because of the similarities between mouse and human cochleae.4 

Figure 1: Causes of congenital hearing loss in developed countries (Van 
Camp and Smith 2019). TB histopathology has been reported for three 
genes implicated in autosomal dominant hearing loss (COCH, GSDME, and 
MYH9), one gene implicated in recessive hearing loss (GJB2), and eighteen 
genes implicated in syndromic hearing loss (COL4A5, EYA1, CDH23/PCDH15, 
PAX3, ERCC6, ERCC8, XPA, XPC, XPD, KCNQ1, TIMM8A, NDS, NF2, GJB2, CHD7, 
SLC26A4, and PHYH). * = X-linked, mitochondrial, and other causes of hearing 
loss. 

continued on page 7
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Figure 2: Chromosomal locations of genes associated with mutation-induced SNHL. The genes are classified according to the type of genetic hearing 
loss that they are associated with and the color convention is the same as in Figure 1. Those with corresponding human TB histopathology are identified 
with a purple star. Modified from Dror and Avraham 2010 (Dror et al., 2010). Note: Several syndromes were diagnosed according to clinical findings. In 
these cases, while a particular genetic mutation is suggested as the cause, this has not always been confirmed by molecular testing.  
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Syndrome   Human cochlear pathology

Usher Syndrome12,37-40 • Patchy atrophy or fibrosis of stria vascularis
 • Degenerate organ of Corti at basal turn
 • Reduction in numbers of spiral ganglion cells 
 • Atrophied nerve fibers
 • Normal stria vascularis

Alport Syndrome41 • Mild loss of hair cells at basal turn
 • Mild, patchy atrophy of stria vascularis
 • Partial loss of cochlear neurons at basal turn
 • Apical endolymphatic hydrops
 • No inner ear abnormalities
 • Severe loss of hair cells

Branchial-oto-renal  • Mild atrophy of stria vascularis 
Syndrome4 • Loss of cochlear neurons and spiral ganglion  
    cells at basal turn
 • Apical endolymphatic hydrops
 • Dislocation of spiral ganglion cells to the fundus  
    of the internal auditory canal  

Jervell and  • Patchy atrophy or fibrosis of stria vascularis  
Lange-Nielsen • Damaged inner and outer hair cells
Syndrome43 • Reduction in numbers of ganglion cells
 • Atrophied nerve fibers

Waardenburg  • Atrophy of stria vascularis 
Syndrome44 • Absent organ of Corti
 • Reduction in numbers of ganglion cells 
 • Atrophied nerve fibers
 • Absent ganglion cells 

Mohr-Tranebjaerg  • Near total loss of cochlear neurons 
Syndrome45,46  • Mild atrophy of stria vascularis
 • Atrophy of spiral ganglion cells
 • Apical endolymphatic hydrops

Norrie Disease45,47  • Severe degeneration of organ of Corti at all turns
 • Eosinophilic proteinaceous material in  
    perilymphatic spaces
 • Endolymphatic hydrops 
 • Severe degeneration of tectorial membrane
 • Cellular loss in the stria vascularis and deposits   
       of lamellar material in the subepithelial space 
 • Loss of spiral ganglion cells
 • Fibrous tissue deposits between remaining   
        spiral ganglion cells

Syndrome  Human cochlear pathology

Neurofibromatosis48-52 • Atrophy of stria vascularis
 • Loss of hair cells
 • Loss of cochlear neurons
 • Cochlear hydrops
 • No inner ear abnormalities
 • Neuronal loss
 • Neo-ossification of basal segment
 • Separation of cochlear nerve fibers
 • Invasion of cochlea by tumor
 • Diminished blood supply to cochlea

Keratosis-Ichthyosis- • Cochleosaccular dysplasia 
Deafness Syndrome53-57  • Hypercellularity of the stria vascularis
 • Partial collapse of Reissner’s membrane
 • Normal stria vascularis
 • Normal population of spiral ganglion cells
 • Melanin deposits in the stria vascularis

Xeroderma  • No inner ear abnormalities 
Pigmentosum58-60 • Patchy atrophy of the stria vascularis
 • Severe atrophy of cochlear neurons

Cockayne  • Patchy loss of inner and outer hair cells  
Syndrome61-64 • Severe atrophy of the stria vascularis
 • Moderate to severe reduction of spiral  
    ganglion neurons

CHARGE Syndrome65,66 • Cochlear hypoplasia
 • Absent organ of Corti
 • Reduction of spiral ganglion cells
 • No inner ear abnormalities

Pendred Syndrome67,68 • Hair cell degeneration
 • Degeneration of stria vascularis
 • Endolymphatic hydrops
 • Normal spiral ganglion cell count
 • Severe atrophy of the stria vascularis

Table 1:  Genetic causes of syndromic hearing loss (SHL).
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Mouse mutants are generated through spontaneous mutations, 
radiation or chemically-induced mutations, or transgenic or 
knock-out mutations.4 These models have been critically helpful 
for understanding the pathophysiology of many forms of 
hereditary deafness; however, the scarcity of human TB histo-
pathology has made comparative studies between the two species 
challenging, and importantly, “men are not simply big mice.”5 

We recently conducted a comprehensive review of all published 
reports on the physiologic and morphologic manifestations of 
mutation-induced SNHL in humans, the latter ascertained via 
histopathologic assessment of TBs from patients with known 
mutation-induced SNHL.6 In addressing the limitations of both 
of these methods, the review underscores the need for alternative 
and improved methods for studying and evaluating human 
hereditary deafness.  

To date, nearly 150 genes have been implicated in nonsyn-
dromic hearing loss.3 Of these, just over one third display 
dominant inheritance and the remainder are recessive. Only  
one gene associated with autosomal recessive NSHL (GJB2)  
and three genes associated with autosomal dominant NSHL 
(COCH, GSDME, and MYH9) have corresponding human  
TB histopathology reports. Findings from these TB specimens 
included near total agenesis of the organ of Corti, hair cells, stria 
vascularis (GJB2), cochlear infiltrates (COCH), degeneration of 
spiral ganglion neurons (GSDME), and absence of the cochlear 
duct (MYH9).7-11 

SHL is characterized by its co-occurrence with other clinical 
signs of disease. Approximately 20 percent of cases of genetic 
hearing loss are syndromic.3 Some of the earliest reports of 
human TB histopathology describe this.12 Fourteen syndromes 
with documented histopathology have been reported (Table 1).

Because of the challenges associated with acquiring and 
processing human TB specimens for study, our understanding 
of the pathophysiology of hearing loss relies heavily on the study 
of mouse models. It is important to consider that while mouse 
models allow for comparative genomics, they are often not used 
to study the same genetic changes that are seen in humans. 

Of the 22 genes and syndromes for which human TB histo-
pathology has been reported, we identified 17 with correspon-
ding mouse models. Similarities and differences between the 
mouse and human phenotypes should thus be interpreted with 
caution. This is most evident in the mouse models for COCH, 
NF2, autosomal dominant GJB2, and MYH9, which did not 
faithfully mimic human inner ear pathology.13–25 The COCH 
knockout model, for example, had normal hearing until 21 
months, and subsequent hearing loss at very high frequencies.16,26 
When translating this age to humans, it would be analogous to 
71 years, which is significantly older than the typical age of the 
onset of hearing loss in humans.8–10,27,28 Additionally, there  

were no observable histopathologic changes in the knockout 
model.16,26 This suggests that the associated deafness phenotype 
is not caused by COCH haploinsufficiency, but by a dominant 
negative or gain-of-function effect in nonsensory regions of the 
inner ear.16,26 A similar discrepancy exists between the mouse  
and human models of NF2.14 

Human TB histopathology is most notable for inner ear 
damage, including cochlear degeneration, atrophy of the stria 
vascularis, loss of hair cells, and loss of spiral ganglion cells.14 
In stark contrast, the most recent NF2 knockout mouse model 
does not show structural abnormalities in the cochlea.14 The 
quantity and nature of the differences between histopathologic 
findings from mouse models of hearing loss vs. human cases 
motivate the development of novel, improved methods for 
assessing the pathophysiology underlying human hereditary 
hearing loss. 

Though there are many challenges associated with studying 
hearing loss in humans, recent technological developments, 
particularly in high resolution cochlear imaging and 
intracochlear fluid sampling, inspire hope that there may soon 
be significantly improved clinical tools for diagnosing hereditary 
deafness and understanding its underlying pathophysiology. 

Currently, there is no alternative to studying human TBs via 
histologic preparation because conventional clinical imaging 
modalities cannot sufficiently resolve cochlear microstructures. 
To address these concerns, several high-resolution fluorescence-, 
phase contrast-, coherence-, and X-ray-based imaging techniques 
have been applied to the cochlea. In 2018, we introduced the 
concept and demonstrated the feasibility of a virtual human 
cochlear whole mount with the use of synchrotron radiation 
phase contrast imaging (SR-PCI) to provide 3D visualization of 
sensory cells and nerve fibers in the cochlea’s sensory epithelium 
in non-decalcified, unstained, three-dimensionally intact human 
TBs (Figure 3).29  

In addition to improvements in techniques for high-resolution 
imaging of the inner ear, efforts are underway to collect and 
analyze perilymph from living patients to infer the structural and 
functional integrity of cells.30–32 We have recently developed a 
novel microneedle device for controlled and reliable human 
perilymph sampling, which brings us one step closer to clinical 
liquid biopsy of the inner ear.33 This future diagnostic tool would 
allow us to infer the molecular mechanisms responsible for 
different forms of acquired and progressive hearing loss in vivo.  

Improvements in cellular-level diagnostics of the inner ear 
have taken place alongside major advances in gene therapy.34 
In 2017, Landegger, et al., demonstrated that a synthetic AAV 
viral vector, called Anc80, has significantly improved efficiency 
of transducing inner and outer hair cells compared to other viral 
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vectors.35 While these encouraging results took place in animal 
models, similar approaches are now being implemented in the 
first clinical trial of gene therapy for deafness in humans.36 

This review provides a comprehensive summary of results 
from human TB studies that have characterized inner ear 
histopathology in cases of genetic hearing loss. Additionally, 
we compare and contrast the available human histopathologic 
data to corresponding mouse models to highlight our continued 
reliance on human TB studies and the need to develop better 
tools to decipher cellular underpinnings of hearing loss in living 
people. Our findings strongly support the ongoing efforts to 
develop devices for cellular-level imaging and liquid biopsy of 
the living human inner ear to establish precise diagnosis and 
guide personalized therapies for deafness. In the meantime, 
the Latin saying “Mortui vivos docent” (“The dead teach the 
living”) succinctly summarizes our approach, as human cadaveric 
TBs continue to guide the development and testing of new 
diagnostics for hearing loss. The maintenance and growth of 
human TB registries will be essential to accelerating progress in 
understanding and treating human hearing loss. l
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Interested? Email us at tbregistry@meei.harvard.edu.

Temporal Bone Removal Technicians 
Needed Nationwide!

s
s

Seeking trained autopsy technicians for the removal of temporal bones on an  
on-call basis. Technicians must be in the U.S. and are paid by case.
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Otopathology Mini-Travel  
Fellowship Program

The NIDCD National Temporal Bone Registry’s 
mini-travel fellowships provide funds for 
research technicians and young investigators 
to visit a temporal bone laboratory for a brief 
educational visit, lasting approximately one 
week. The emphasis is on the training of 
research assistants, technicians, and junior 
faculty. 

These fellowships are available to:
•	 U.S. hospital departments who aspire to 

start a new temporal bone laboratory
•	 Inactive U.S. temporal bone laboratories 

who wish to reactivate their collections
•	 Active U.S. temporal bone laboratories who 

wish to learn new research techniques

Up to two fellowship awards will be made each 
year ($1,000 per fellowship). The funds may 
be used to defray travel and lodging expenses. 
Applications will be decided on merit. 

Interested applicants should submit the 
following:
•	 An outline of the educational or training 

aspect of the proposed fellowship  
(1–2 pages)

•	 Applicant’s curriculum vitae
•	 Letter of support from a temporal bone 

laboratory director or department chairman
•	 Letter from the host temporal bone 

laboratory indicating willingness to receive 
the traveling fellow

Applications should be submitted to:
Felipe Santos, MD
NIDCD Temporal Bone Registry
Massachusetts Eye and Ear
243 Charles Street, Boston, MA 02114
felipe_santos@meei.harvard.edu

Want to go digital?

The editors of The Registry are now offering 
an electronic version of the newsletter for 
those who are interested. Mailed copies 
will continue to be distributed; however, if 
you prefer to receive an email with a PDF 
version of the newsletter instead, let us 
know and we will add you to our email list!

In addition, all current and previous issues  
can be found on our website at  

TBRegistry.org/For-Researchers/ 
The-Registry-Newsletter

Interested in receiving  
digital newsletter copies?

Email Mary Yaeger,  
Mass. Eye and Ear  

Communications Manager, at  
mary_yaeger@meei.harvard.edu.
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NIDCD National Temporal Bone,  
Hearing and Balance
Pathology Resource Registry  
Massachusetts Eye and Ear 
243 Charles Street 
Boston, MA 02114-3096

Free Brochures for your Office or Clinic about Temporal Bone Research and Donation
The Gift of Hearing and Balance: Learning About Temporal Bone Donation is a 16-page, full-color booklet that  
describes in detail the benefits of temporal bone research. It also answers commonly asked questions regarding the 
temporal bone donation process. Dimensions: 7”x10”

If you would like to display this brochure, please complete the form below and return it to the Registry by mail or fax.  
The brochures will be sent to you free of charge. Please circle the amount requested for each brochure or write in the amount  
if not listed.

The Gift of Hearing and Balance __________ 25  50  100

Name: ________________________________________________________________________________________________

Address: ______________________________________________________________________________________________

City, State, Zip: _________________________________________________________________________________________

Telephone: ____________________________________________________________________________________________

Mail or fax this form to the Registry at: NIDCD National Temporal Bone, Hearing and Balance Pathology Resource Registry
            Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114
            Toll-free phone: (800) 822-1327, Fax: (617) 573-3838
            Email: tbregistry@meei.harvard.edu
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